极限

以下是有关函数极限的非正式定义:

If \(f(x)\) is defined for all \(x\) near \(a\), except possibly at \(a\) itself, and if we can ensure that \(f(x)\) is as close as we want to \(L\) by taking \(x\) close enough to \(a\), but not equal to \(a\), we say that the function \(f\) approaches the limit \(L\) as \(x\) approaches \(a\), and we write

\[\lim_{x\to{a}} f(x) = L.\]

翻译成中文就是: 如果函数\(f\)在\(a\)附近的所有\(x\)上都有定义(可能在\(a\)点本身无定义),并且我们可以通过让 \(f(x)\)足够接近\(a\)(但不等于\(a\))来保证\(f(x)\)任意接近\(L\),那么我们称当\(f(x)\)趋近于 \(a\)时,函数\(f\)的极限为\(L\),并记作

\[\lim_{x\to{a}} f(x) = L.\]

之所以说这是一个非正式的定义,是因为诸如”足够接近“,“任意接近”之类的表达不是严谨的数学语言。 例如有多接近算是足够接近?任意接近又是怎样的一种接近?只有在用严格的数学语言对这些情形进行描述后, 我们才能得到函数极限的正式定义。




Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Build the Linux kernel
  • Xv6
  • Program Counter in ARM Processor
  • Displaying External Posts on Your al-folio Blog